
European Broadcasting Union
Case postale 45
Ancienne Route 17A
CH-1218 Grand-Saconnex
Geneva, Switzerland
techreview@ebu.ch

Tech 3285 Technical Specification

— a format for audio data files in broadcasting

July 2001

Version 1

SPECIFICATION OF THE BROADCAST WAVE FORMAT

July 2001

Summary

The Broadcast Wave Format (BWF) is a file format for audio data. It can be used for the
seamless exchange of audio material between (i) different broadcast environments and
(ii) equipment based on different computer platforms.
As well as the audio data, a BWF file contains the minimum informationm � or metadata
� that is considered necessary for all broadcast applications. The Broadcast Wave For-
mat is based on the Microsoft WAVE audio file format. The EBU has added a �Broad-
cast Audio Extension� chunk to the basic WAVE format.

BWF Version 0
The specification of the Broadcast Wave Format for PCM audio data (now referred to as
Version 0) was published in 1997 in EBU document Tech 3285. It is now replaced by
Version 1 [see below].

BWF Version 1
Version 1 differs from Version 0 only in that 64 of the 254 reserved bytes in Version 0 are
used to contain an SMPTE UMID 1 and the field is changed.

1. SMPTE 330M-2000: Television - Unique Material Identifier (UMID).

VERSION 1

Tech 3285 A

Contents

Introduction . 1

Chapter 1: Broadcast Wave Format file . 3
1.1. Contents of a Broadcast Wave Format file .3
1.2. Existing chunks defined as part of the RIFF standard.3
1.3. Broadcast Audio Extension chunk .3

1.3.1. Terminology . 4
1.4. Other information specific to applications .5

Bibliography . 6

Appendix A: RIFF WAVE (.WAV) file format . 7
A.1. Waveform Audio File Format (WAVE) .7

A.1.1. WAVE Format Chunk . 7
A.1.2. WAVE format categories . 8

A.2. Pulse Code Modulation (PCM) format .8
A.2.1. Data packing for PCM WAVE files. 9
A.2.2. Data format of the samples. 10
A.2.3. Examples of PCM WAVE files . 10
A.2.4. Storage of WAVE data . 11
A.2.5. Fact chunk . 11
A.2.6. Other optional chunks . 11

A.3. Other WAVE types .11
A.3.1. General information. 11
A.3.2. Fact chunk . 11
A.3.3. WAVE format extension . 12

SPECIFICATION OF THE BROADCAST WAVE FORMAT
Introduction

The Broadcast Wave Format (BWF) is based on the Microsoft WAVE audio file format, which is a type of file
specified in the Microsoft �Resource Interchange File Format�, RIFF. WAVE files specifically contain audio
data. The basic building block of RIFF files is a �chunk� that contains specific information, an identification
field and a size field. A RIFF file consists of a number of chunks.

For the BWF, some restrictions are applied to the original WAVE format. In addition, the BWF file includes a
<Broadcast Audio Extension> chunk. This is illustrated in Fig. 1.

This document contains the specification of Version 1 the broadcast audio extension chunk, which is used in all
BWF files. In addition, basic information on the RIFF format and how it can be extended to other types of audio
data is given in Appendix A. Details of the PCM Wave format are also given in Appendix A. Detailed specifica-
tions of the extension to specific other types of audio data will be published in Supplements to this document.

BWF Version 0

Version 0 of the BWF was published in 1997. It has now been replaced by Version 1.

<broadcast_audio_extension>

<fmt-ck>

[<fact-ck>]

[<mpeg_audio_extension>]

[< >]

<wave_data>

Compulsory chunk
defined by Microsoft

Custom chunk
defined in this document

MPEG formats only

Other optional chunks
not supported by all
applications

Audio data

BWF file

Figure 1
Broadcast Wave File format.
1 July 2001

VERSION 1
BWF Version 1

Version 1 of the BWF file differs from Version 0 only in that 64 of the 254 reserved bytes in Version 0 are used to
contain an SMPTE UMID (Unique Material Identifier) and the <Version> field has been changed accordingly.

Version 1 is backwards compatible with Version 0. This means that software designed to read Version 0 files will
interpret Version 1 files correctly, except that it will ignore the UMID field.

The change is also forward compatible. This means that Version 1 software will be able to read Version 0 files
correctly. Ideally, Version 1 software should read the <Version> field to determine if a UMID is present. How-
ever, if the Version number is not read, the software will read all zeros in the UMID field in a Version 0 file. This
will not be a valid UMID and will be ignored.
Tech 3285 2

SPECIFICATION OF THE BROADCAST WAVE FORMAT Chapter 1
Chapter 1
Broadcast Wave Format file

1.1. Contents of a Broadcast Wave Format file

A Broadcast Wave Format file shall start with the mandatory Microsoft RIFF �WAVE� header and at least the
following chunks:

Note: Any additional types of chunks that are present in the file have to be considered as private. Applications
are not required to interpret or make use of these chunks. Thus the integrity of the data contained in any
chunks not listed above is not guaranteed. However, BWF applications should pass on these chunks when-
ever possible.

1.2. Existing chunks defined as part of the RIFF standard

The RIFF standard is defined in documents issued by the Microsoft Corporation [1]. This application uses a
number of chunks which are already defined. These are:

The current descriptions of these chunks are given for information in Appendix A.

1.3. Broadcast Audio Extension chunk

Extra parameters needed for the exchange of material between broadcasters are added in a specific �Broadcast
Audio Extension� chunk, defined as follows:

<WAVE-form> ->

RIFF(‘WAVE’

<broadcast_audio_extension> //information on the audio sequence

<fmt-ck> //Format of the audio signal: PCM/MPEG

[<fact-ck>] //Fact chunk is required for MPEG formats only

[<mpeg_audio_extension>] //Mpeg Audio Extension chunk is required for MPEG
formats only

<wave-data>) //sound data

fmt-ck

fact-ck
3 July 2001

Chapter 1 VERSION 1
1.3.1. Terminology

Description ASCII string (maximum 256 characters) containing a free description of the sequence.
To help applications which only display a short description, it is recommended that a
résumé of the description is contained in the first 64 characters, and the last 192 charac-
ters are use for details.

If the length of the string is less than 256 characters, the last one is followed by a null
character. (00)

Originator ASCII string (maximum 32 characters) containing the name of the originator/producer
of the audio file. If the length of the string is less than 32 characters, the field is ended
by a null character.

OriginatorReference ASCII string (maximum 32 characters) containing a non ambiguous reference allocated
by the originating organization. If the length of the string is less than 32 characters, the
field is ended by a null character.

Note: The EBU has defined a format for the OriginatorReference field.
See EBU Recommendation R99-1999 [2].

OriginationDate Ten ASCII characters containing the date of creation of the audio sequence. The for-
mat is �yyyy-mm-dd� (year-month-day).

Year is defined from 0000 to 9999

Month is define from 1 to 12

Day is defined from 1 to 28,29,30 or 31

The separator between the items can be anything but it is recommended that one of the
following characters is used:

�-� hyphen �_� underscore �:� colon � � space �.� stop

broadcast_audio_extension typedef struct {

DWORD ckID; /* (broadcastextension)ckID=bext */

DWORD ckSize; /* size of extension chunk */

BYTE ckData[ckSize]; /* data of the chunk */

}

typedef struct broadcast_audio_extension {

CHAR Description[256]; /* ASCII : «Description of the sound sequence» */

CHAR Originator[32]; /* ASCII : «Name of the originator» */

CHAR OriginatorReference[32]; /* ASCII : «Reference of the originator» */

CHAR OriginationDate[10]; /* ASCII : «yyyy-mm-dd» */

CHAR OriginationTime[8]; /* ASCII : «hh-mm-ss» */

DWORD TimeReferenceLow; /* First sample count since midnight low word */

DWORD TimeReferenceHigh; /* First sample count since midnight, high word */

WORD Version; /* Version of the BWF; unsigned binary number */

BYTE UMID_0 /* Binary byte 0 of SMPTE UMID */

....

BYTE UMID_63 /* Binary byte 63 of SMPTE UMID */

BYTE Reserved[190] ; /* 190 bytes, reserved for future use, set to “NULL” */

CHAR CodingHistory[]; /* ASCII : « History coding » */

} BROADCAST_EXT
Tech 3285 4

SPECIFICATION OF THE BROADCAST WAVE FORMAT Chapter 1
OriginationTime Eight ASCII characters containing the time of creation of the audio sequence. The for-
mat is �hh-mm-ss� (hours-minutes-seconds).

Hour is defined from 0 to 23.

Minute and second are defined from 0 to 59.

The separator between the items can be anything but it is recommended that one of the
following characters is used:

TimeReference This field contains the timecode of the sequence. It is a 64-bit value which contains
the first sample count since midnight. The number of samples per second depends
on the sample frequency which is defined in the field <nSamplesPerSec> from the
<format chunk>.

Version An unsigned binary number giving the version of the BWF, particularly the contents of
the Reserved field. For Version 1, this is set to 0001h.

UMID 64 bytes containing a UMID (Unique Material Identifier) to the SPMTE 330M stan-
dard [3]. If only a 32 byte �basic UMID� is used, the last 32 bytes should be set to
zero. (The length of the UMID is given internally.)

Note: The EBU intends to publish guidance on the use of the UMID in audio files.

Reserved 190 bytes reserved for extensions. If the Version field is set to 0001h, these 190 bytes
must be set to a NULL (zero) value.

CodingHistory Non-restricted ASCII characters, containing a collection of strings terminated by CR/
LF. Each string contains a description of a coding process applied to the audio data.
Each new coding application is required to add a new string with the appropriate infor-
mation.

This information must contain the type of sound (PCM or MPEG) with its specific
parameters :

PCM : mode (mono, stereo), size of the sample (8, 16 bits) and sample fre-
quency:

MPEG : sample frequency, bit-rate, layer (I or II) and the mode (mono, stereo,
joint stereo or dual channel).

It is recommended that the manufacturers of the coders provide an ASCII string for use
in the coding history.

Note: The EBU has defined a format for CodingHistory which will simplify the interpre-
tation of the information provided in this field.
See EBU Recommendation R98-1999 [4].

1.4. Other information specific to applications

The EBU will define other chunks to carry or point to data which are specific to certain applications, e.g. for
edited audio or for archival.

See the EBU website for details [5].

�-� hyphen �_� underscore �:� colon � � space �.� stop
5 July 2001

Bibliography VERSION 1
Bibliography

[1] MSDN online library: http://www.msdn.microsoft.com/library/default.asp

[2] EBU R 99-1999: �Unique� Source Identifier (USID) for use in the OriginatorReference field of the
Broadcast Wave Format.

[3] SMPTE 330M-2000: Television - Unique Material Identifier (UMID).

[4] EBU R 98-1999: Format for CodingHistory field in Broadcast Wave Format files, BWF.

[5] EBU website: http://www.ebu.ch/pmc_bwf.html.

[6] Microsoft Software Developers Kit, Multimedia Standards Update, rev 3.0, 15 April 1994.
Tech 3285 6

http://www.msdn.microsoft.com/library/default.asp
http://www.ebu.ch/pmc_bwf.html

SPECIFICATION OF THE BROADCAST WAVE FORMAT Appendix A
Appendix A
RIFF WAVE (.WAV) file format

The information in this appendix is taken from the specification documents of the Microsoft RIFF file format. It
is included for information only.

For full information on the RIFF file format, consult the latest version of the Microsoft Software Developers Kit
[6].

In this appendix, EBU explanatory notes are given in a blue-coloured text box.

A.1. Waveform Audio File Format (WAVE)

The WAVE format is defined as follows. Programs must expect (and ignore) any unknown chunks encountered,
as with all RIFF forms. However, <fmt-ck> must always occur before <wave-data>, and both of these chunks
are mandatory in a WAVE file.

The WAVE chunks are described in the following sections.

A.1.1. WAVE Format Chunk

The WAVE format chunk <fmt-ck> specifies the format of the <wave-data>. The <fmt-ck> is defined as follows:

<WAVE-form> ->

RIFF (‘WAVE’

<fmt-ck> // Format

[<fact-ck>] // Fact chunk

[<other-ck>] // Other optional chunks

<wave-data> // Wave data

<fmt-ck> -> fmt(<common-fields>

<format-specific-fields>)

<common-fields> ->

struct{

WORD wFormatTag; // Format category

WORD nChannels; // Number of channels

DWORD nSamplesPerSec; // Sampling rate

DWORD nAvgBytesPerSec; // For buffer estimation

WORD nBlockAlign; // Data block size

}

7 July 2001

Appendix A VERSION 1
The fields in the <common-fields> portion of the chunk are as follows:

Field Description

wFormatTag A number indicating the WAVE format category of the file. The content of the <for-
mat-specific-fields> portion of the �fmt� chunk, and the interpretation of the waveform
data, depend on this value.

nchannels The number of channels represented in the waveform data, such as 1 for mono or 2 for
stereo.

nSamplesPerSec The sampling rate (in samples per second) at which each channel should be played.

nAvgBytesPerSec The average number of bytes per second at which the waveform data should be trans-
ferred. Playback software can estimate the buffer size using this value.

nBlockAlign The block alignment (in bytes) of the waveform data. Playback software needs to proc-
ess a multiple of <nBlockAlign> bytes of data at a time, so the value of <nBlockAlign>
can be used for buffer alignment.

The <format-specific-fields> consists of zero or more bytes of parameters. Which parameters occur depends on
the WAVE format category - see the following sections for details. Playback software should be written to allow
for (and ignore) any unknown <format-specific-fields> parameters that occur at the end of this field.

A.1.2. WAVE format categories

The format category of a WAVE file is specified by the value of the <wFormatTag> field of the �fmt� chunk. The
representation of data in <wave-data>, and the content of the <format-specific-fields> of the �fmt� chunk, depend
on the format category.

Among the currently defined open non-proprietary WAVE format categories are as follows:

A.2. Pulse Code Modulation (PCM) format

If the <wFormatTag> field of the <fmt-ck> is set to WAVE_FORMAT_PCM, then the waveform data consists of
samples represented in pulse code modulation (PCM) format. For PCM waveform data, the <format-specific-
fields> is defined as follows:

wFormatTag Value Format Category

WAVE_FORMAT_PCM (0 x 0001) Microsoft Pulse Code Modulation (PCM) format

WAVE_FORMAT_MPEG (0 x 0050) MPEG-1 Audio (audio only)

EBU Note 1: Although other WAVE formats are registered with Microsoft, only the above formats are at
present used with the BWF. Details of the PCM WAVE format are given in Section A.2 of this
appendix. General information on other WAVE formats is given in Section A.3.

Details of the MPEG WAVE format are given in Supplement 1 to this document. Other WAVE
formats may be defined in future Supplements.

<PCM-format-specific> ->

struct{

WORD nBitsPerSample; // Sample size

}

Tech 3285 8

SPECIFICATION OF THE BROADCAST WAVE FORMAT Appendix A
The <nBitsPerSample> field specifies the number of bits of data used to represent each sample of each channel.
If there are multiple channels, the sample size is the same for each channel.

For PCM data, the <nAvgBytesPerSec> field of the �fmt� chunk should be equal to the following formula
rounded up to the next whole number:

The <nBlockAlign> field should be equal to the following formula, rounded to the next whole number:

A.2.1. Data packing for PCM WAVE files

In a single-channel WAVE file, samples are stored consecutively. For stereo WAVE files, channel 0 represents
the left channel, and channel 1 represents the right channel. The speaker position mapping for more than two
channels is currently undefined. In multiple-channel WAVE files, samples are interleaved.

The following diagrams show the data packing for 8-bit and 16-bit mono and stereo WAVE files:

Data Packing for 8-bit mono PCM:

Data Packing for 8-bit stereo PCM :

Data Packing for 16-bit mono PCM:

EBU Note 2: The above formulae do not always give the correct answer. Strictly speaking, the number of
bytes per sample (nBitsPerSample/8) should be rounded first. Then this integer should be mul-
tiplied by <nChannels> (which is always an integer) to give <nBlockAlign>. This in turn
should be multiplied by <nSamplesPerSecond> to give <nAvgBytesPerSec>.

Sample 1 Sample 2 Sample 3 Sample 4

Channel 0 Channel 0 Channel 0 Channel 0

Sample 1 Sample 2

Channel 0
(left)

Channel 1
(right)

Channel 0
(left)

Channel 1
(right)

Sample 1 Sample 2

Channel 0
low-order byte

Channel 0
high-order byte

Channel 0
 low-order byte

Channel 0
high-order byte

nChannel x nSamplesPerSecond x nBitsPer Sample
8

--

nChannel x nBitsPer Sample
8

9 July 2001

Appendix A VERSION 1
Data Packing for 16-bit stereo PCM:

A.2.2. Data format of the samples

Each sample is contained in an integer i. The size of i is the smallest number of bytes required to contain the
specified sample size. The least significant byte is stored first. The bits that represent the sample amplitude are
stored in the most significant bits of i, and the remaining bits are set to zero.

For example, if the sample size (recorded in <nBitsPerSample>) is 12 bits, then each sample is stored in a two-
byte integer. The least significant four bits of the first (least significant) byte is set to zero. The data format and
maximum and minimum values for PCM waveform samples of various sizes are as follows:

For example, the maximum, minimum, and midpoint values for 8-bit and 16-bit PCM waveform data are as fol-
lows:

A.2.3. Examples of PCM WAVE files

Example of a PCM WAVE file with 11.025 kHz sampling rate, mono, 8 bits per sample:

Example of a PCM WAVE file with 22.05 kHz sampling rate, stereo, 8 bits per sample:

Example of a PCM WAVE file with 44.1 kHz sampling rate, mono, 20 bits per sample:

Sample 1

Channel 0
(left)

Channel 0
(left)

Channel 1
(right)

Channel 1
(right)

low-order byte high-order byte low-order byte high-order byte

Sample Size Data Format Maximum Value Minimum Value

One to eight bits Unsigned integer 255 (0 x FF) 0

Nine or more bits Signed integer i Largest positive value of i Most negative value of i

Format Maximum Value Minimum Value Midpoint Value

8-bit PCM 255 (0 x FF) 0 128 (0 x 80)

16-bit PCM 32767 (0 x 7FFF) -32768 (-0 x 8000) 0

RIFF(‘WAVE’ fmt(1, 1, 11025, 11025, 1, 8)

data(<wave-data>))

RIFF(‘WAVE’ fmt(1, 2, 22050, 44100, 2, 8)

data(<wave-data>))

RIFF(‘WAVE’ INFO(INAM(“O Canada”Z))

fmt(1, 1, 44100, 132300, 3, 20)

data(<wave-data>))
Tech 3285 10

SPECIFICATION OF THE BROADCAST WAVE FORMAT Appendix A
A.2.4. Storage of WAVE data

The <wave-data> contains the waveform data. It is defined as follows:

A.2.5. Fact chunk

The <fact-ck> chunk stores important information about the contents of the WAVE file. This chunk is defined as
follows:

This chunk is not required for PCM files.

The �fact� chunk will be expanded to include any other information required by future WAVE formats. Added
fields will appear following the <dwFileSize> field. Applications can use the chunk size field to determine
which fields are present.

A.2.6. Other optional chunks

A number of other chunks are specified for use in the WAVE format. Details of these chunks are given in the
specification of the WAVE format and any updates issued later

A.3. Other WAVE types

A.3.1. General information

All newly-defined WAVE types must contain both a <fact chunk> and an extended wave format description
within the <fmt-ck> format chunk. RIFF WAVE files of type WAVE_FORMAT_PCM need not have the extra
chunk nor the extended wave format description.

A.3.2. Fact chunk

This chunk stores file-dependent information about the contents of the WAVE file. It currently specifies the
length of the file in samples.

See Section A.2.5. in this appendix.

EBU Note 3: The WAVE format can support other optional chunks which can be included in WAVE files to
carry specific information. As stated in the note to Section 1.1 (see Chapter 1), these are con-
sidered to be private chunks in the Broadcast Wave Format and will be ignored by applications
which cannot interpret them.

EBU Note 4: The following information has been extracted from the Microsoft Software Developers Kit [6].
It outlines the necessary extensions of the basic WAVE files (used for PCM audio) to cover
other types of WAVE format.

<wave-data> -> { <data-ck> }

<data-ck> -> data(<wave-data>)

<fact-ck> -> fact(<dwFileSize:DWORD> // Number of samples
11 July 2001

Appendix A VERSION 1
A.3.3. WAVE format extension

The extended wave format structure added to the <fmt-ck> is used to define all non-PCM format wave data, and
is described as follows. The general extended waveform format structure is used for all non-PCM formats.

The fields in the <common-fields> portion of the chunk are as follows:

Field Notes
wFormatTag Defines the type of WAVE file.

nChannels Number of channels in the wave, 1 for mono, 2 for stereo.

nSamplesPerSec Frequency of the sample rate of the wave file. This should be 48000 or 44100 etc. This
rate is also used by the sample size entry in the fact chunk to determine the length in
time of the data.

nAvgBytesPerSec Average data rate. Playback software can estimate the buffer size using the <nAvg-
BytesPerSec> value.

nBlockAlign The block alignment (in bytes) of the data in <data-ck>. Playback software needs to
process a multiple of <nBlockAlign> bytes of data at a time, so that the value of
<nBlockAlign> can be used for buffer alignment.

wBitsPerSample This is the number of bits per sample per channel data. Each channel is assumed to
have the same sample resolution. If this field is not needed, then it should be set to
zero.

cbSize The size in bytes of the extra information in the WAVE format header not including the
size of the WAVEFORMATEX structure.

EBU Note 5: The fields following the <cbSize> field contain specific information needed for the WAVE for-
mat defined in the field <wFormatTag>. Any WAVE formats which can be used in the BWF
will be specified in individual Supplements to this document, published by the EBU.

typedef struct waveformat_extended_tag {

WORD wFormatTag; /* format type */

WORD nChannels; /* number of channels (i.e. mono, stereo...) */

DWORD nSamplesPerSec; /* sample rate */

DWORD nAvgBytesPerSec; /* for buffer estimation */

WORD nBlockAlign; /* block size of data */

WORD wBitsPerSample; /* Number of bits per sample of mono data */

WORD cbSize; /* The count in bytes of the extra size */

} WAVEFORMATEX;
Tech 3285 12

	Cover
	Summary
	Contents
	Introduction
	Chapter 1 Broadcast Wave Format file
	1.1. Contents of a Broadcast Wave Format file
	1.2. Existing chunks defined as part of the RIFF standard
	1.3. Broadcast Audio Extension chunk
	1.3.1. Terminology

	1.4. Other information specific to applications

	Bibliography
	Appendix A RIFF WAVE (.WAV) file format
	A.1. Waveform Audio File Format (WAVE)
	A.1.1. WAVE Format Chunk
	A.1.2. WAVE format categories

	A.2. Pulse Code Modulation (PCM) format
	A.2.1. Data packing for PCM WAVE files
	A.2.2. Data format of the samples
	A.2.3. Examples of PCM WAVE files
	A.2.4. Storage of WAVE data
	A.2.5. Fact chunk
	A.2.6. Other optional chunks

	A.3. Other WAVE types
	A.3.1. General information
	A.3.2. Fact chunk
	A.3.3. WAVE format extension

